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Abstract 
This paper presents a numerical model which is capable of predicting the behavior of 
fibrous prestressed concrete beams and frames subjected to cyclic loads. The stiffness method with 
the effective secant stiffness is used here in analyzing plane structures, while the analysis of member 
cross sections that are subjected to cyclic loads is carried out in combination with the layered section 
approach. Material nonlinearity has been taken in to consideration through the analysis of these 
sections. This method deals only with axial forces and bending moments neglecting the effect of 
shear forces. The study presents a program written with MATLAB language that analyzes structures 
by the STIFFNESS method and divides the cross sections  into small layers in order to utilize the 
nonlinearity of the stress distribution along the section depth. The results at each section are 
moments, curvatures, displacements, forces, stresses and strains under each load cycle. A cyclic 
model for fibrous concrete subjected to uniaxial compression or tension has been proposed. Also the 
cyclic model of Menegotto and Pinto for conventional and prestressing steel has been adopted. Full 

bond between steel and concrete is assumed.
The study shows that the prestresssing force in concrete members has reduced the 
ductility or capacity of energy dissipation, while a noticeable increase in the member failure load is 
recorded. Moreover, the existence of steel fibers in concrete enhances its stiffness, delays the cracks 

and then narrows their openings in tension zone and decreases their negative effect.The scheme of 
the layered section presents more reliable stress distribution on the cross section of the concrete 
members.
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Introduction 
The behavior of steel fiber reinforced concrete members subjected to cyclic loads is extremely complex. It is 

necessary to make use of numerical solutions in solving non linear governing equations established by the 

material nonlinearities and the effect of large displacements in concrete structures since finding analytic 

solutions seems to be more complicated. The finite element method has been used by several researchers [1] [2] 

to analyze reinforced and prestressed concrete members considering material nonlinearity. While the stiffness 

method with tangent and secant stiffnesses was used by others [3-5] to analyze the reinforced concrete frames 

under monotonic loading. This paper presents a more practical MATLAB computer program developed for an 

elastic–plastic analysis of plane frames. It takes into account the materials nonlinearity of steel fibrous concrete, 

reinforcing steel and prestressed tendons embedded in the sections of concrete members. In order to get a 

proper prediction for the behavior of prestressed fibrous concrete structure under cyclic loading, constitutive 

relationships for steel fiber concrete, conventional steel and prestressing steel wires are required. Fibrous 

Concrete in Cyclic CompressionThe cyclic behavior model of the steel fiber concrete under uniaxial 

compression shown in Fig. (1) is adopted, where the monotonic stress–strain curve [6] represents the envelope 

for the cyclic behavior paths.                                                                                                               

Fig. (1):  Cyclic Model of steel fiber concrete under compression

The following equation recommended in Ref. [6] was used for the envelope curve:
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Where: 

fcf
 is the normalized peak stress of steel fiber concrete 

.

of

 is the normalized strain at peak stress of SFC  

DCBA ,,, are coefficients depend on the percent of steel fiber content
fcf

(Vf %), maximum aggregate size and the maximum cylinder compressive 

strength 
fcf.

The unloading path presented in this paper (Fig. (1)) is that proposed by Ref. [7]: 

un

pm

pu
muu C.................................................................................................(2)

where:
c

u
u f

 is the normalized stress on the reloading curve. 

o

u
u  is the normalized strain on the reloading curve. 

0.195.0uC  is unloading coefficient 

c

m
m f

 is the normalized stress at the unloading point. 

o

m
m  is the normalized strain at the unloading point. 

11 pun  is a coefficient (function of the plastic strain). 

The amount of plastic strain for each full unloading is evaluated as follow [8]: 

2.2for)2.2(72.0584.1

2.2for)(127.0055.0 1.3

mm

mmm
p........................................(3)

where: 
o

p
p  is the normalized plastic strain. 

o

m
m  is the normalized unloading strain on the envelope curve. 

The reloading strain value on the envelope curve for each full reloading was expressed by the formula [9]: 
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rmm k1

Where: 
1for1.0

1for0.0

1

1

m

m
rk ...................................................................(4) 

For each unloading, the reloading curve has the following equation [8]:

             …………………………(5)        rrrrrrrr DCBA 23

Where: r : is the normalized stress on the reloading curve. 

r : is the normalized strain on the reloading curve. 

rrrr DCBA ,,,  is the reloading coefficients. 

To solve for the coefficientsrrrr DCBA ,,,, the boundary conditions are:

1. The polynomial passes though the normalized plastic strain point ( 0,p ).

2. The polynomial passes though the normalized reloading strain point ( 11, mm ). 

3. The slope of the polynomial at the normalized reloading strain point exactly coincides with the 

slope of the monotonic curve at the same point; i.e. (
),( 11)1,1( mmmm

cr EE ).

4. The following expression would be satisfied: 

      ………………………………………(6)
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cfc fE 0.45atcurvemonotonic theofslope the
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Fibrous Concrete in Cyclic Tension 

To model the behavior of concrete under cyclic tension, equation (1) can be used wi           )DCBA ,,,

different coefficients  :    

                      …………..(7)
DCB
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 where: 

t

t
t f

 is the normalized maximum tensile strength in MPa .
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ot

t
t  is the normalized strain at maximum tensile strength 

.

ct ff 5.0  is the maximum tensile strength for plain concrete in MPa  [10]. 

5337.0A ,     9394.1B ,      4127.1C ,     0605.0D

                                ……. (8)                 Ref. [8]     tt f
o

000075.0000198.0    Soroushian and 

Lee [11] proposed the following equations to evaluate the tensile strength and the corresponding strain for SFR 

based on plain concrete:

                                                       (9))...05.0016.01.(
3

1

fffftt NldNff
f

                                                                              (10))..35.01( ffftt ldN
oof

Where: 
2

.

64.1

f

f
f

d

V
N A linear path was adopted for the cyclic behavior of concrete 

under tension with modulus of elasticity equals to the nominal modulus of elasticity in 

compression. This is valid up to the cracking strength.  

Fig. (2) and Fig. (3) show the cyclic tension model of SFRC used in the current study. 

Cyclic Model for SFRC under Tension
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Fig. (2):  Cyclic model of steel fiber concrete under uniaxial tension



www.manaraa.com

17

Al –Rafidain Engineering              Vol. 14          No. 1          2006 

Cyclic Model for SFRC (Tension to Coompression)
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Fig. (3):  Cyclic model of SFR under uniaxial tension–compression

Steel Reinforcement in Cyclic Stresses 
For uniaxial stress–strain relationship of reinforcing and prestressing steel, the Menegotto and Pinto [12] model 

is adopted as in Fig. (4). The stress–strain curves of all cycles lie within the two parallel lines of slope b defined 

by the monotonic curve and passing through the yield points (oo
11 ,),(oo

22 ,) respectively. All these 

curves have the same initial slope equal to the slope E0 of the monotonic curve.

Fig. (4): Menegotto and Pinto Cyclic model for reinforcing steel
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For each half cycle of the stress–stain curve the following equation is proposed in a normalized form:

                                     ………..     ...    (11)  

r
RR

b
b

1

*

*
**

)1(

).1(
.

Where: b is the strain hardening ratio (slope E1/slope E0).

For the curves after the first load inversion:

                                      …………….. (12)              

ro

r*
 ,

ro

r*

where ),( rr is the start of the rth inversion, ),( oo is found by solving the equations of the two 

intersecting lines as in Fig. (5).

The exponent R varies after every inversion and is calculated as follows:

                                                                  …………… (13)          

2

1.

a

a
RR o

Where Ro, a1, a2, are parameters chosen for the best correlation between experimental and predicted stress–

strain curves.  is the plastic deformation undergone in each half cycle as shown in Fig. (5).

Fig. (5):  Definition of factor R in Menegotto and Pinto Cyclic Steel model
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Fig. (6):  The frame model tested by White and Sabnis [13] 

FIG (7): Load –Deflection curve at node 3 (horizontal displacement)
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Nonlinear Sectional Analysis 
To account for the heterogeneous section, it is divided into imaginary concrete layers, reinforcing and 

prestressing bar elements, each is analyzed separately. The plane section and the perfect bonding hypothesis 

permits the calculation of the longitudinal strain in each element of concrete, reinforcing steel and prestressing 

tendon as a function of the top and bottom fiber strain. The internal axial force  and bending moment M are 

calculated as follows:

                                                         (14)
i
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i
ps

n

i
sc

m

i
c AfAfAf ...

111

               ………          (15)  
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To compute the internal and external actions (axial force and bending moment), the top and bottom strain will 

be corrected iteratively until the two internal actions nearly equal to the external actions within the tolerable 

limit

Nonlinear Frame Analysis 
The linear stiffness method for a frame divided into sub members with uncracked section will be used in the 

elastic range initially. As a result, three actions at each end (axial force FA, bending moment MBand shear force 

FSwill be obtained); from which the strain at the center line cl of each section and the curvature  can be 

obtained.

The effective area eA and effective moment of inertia eI at each section is calculated as follows:

                                                                                                 (16)
)( ccl

A
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F
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                                                                                                   (17)
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B
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M
I        
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Where Ec is the modulus of elasticity for concrete. To evaluate the equivalent effective area Ax and effective 

moment of inertia Iz for each member, the interpolated values of the two ends were recommended as follows:  

(18)
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The current calculated values for Ax and Iz for each member are used with the previous values used in the 

stiffness matrices (
px

A,
pzI) by taking the average of values:

.                                                                (20)
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These values will be used to generate a new stiffness matrix for the next iteration. New axial and flexural 

stiffnesses are calculated. This procedure will continue until the stiffness values converge to certain values, 

then the correct displacements, curvatures and actions are computed for a specific loading case.

Results and Discussion 

To demonstrate and test the validity of the present method, a comparison has been made with results obtained 

from a tested model [13] shown in Fig. (6) with the theoretical technique of the current study. Fig. (7) shows a 

good agreement between the experimental and numerical technique.  

A hypothetical prestressed frame is loaded cyclically under 4 modes of loading as shown in Fig. (8). The steel 

fiber used has an aspect ratio (L/D = 83), and the prestressing force is (150 kN). The dimensions and details of 

section reinforcement for the frame members are shown in Table 1 and Fig. (9). 
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Fig. (8):  Loading modes of prestressed hypothetical frame under analysis

Table (1):  Dimensions of the frame members 

Mode Member Width 

of 

Section  
)(mmb

Height 

of 

section 
)(mmh

Area of 

reinforcing 

steel layer 

in section 

)( 2mmA
is

Distance 

from top 

fiber to the 

reinforcing 

steel layer 

)(mmY
is

Area of 

prestressing 

steel layer 

in section 

)( 2mmA
ip

Distance 

from top 

fiber to the 

prestressing 

steel layer 

)(mmY
ip

1000 50 - - Beam 300 300 

1000 250 - - 

700 50 - - 

700 200 - - 

First 

and 

second Column 300 400 

700 350 - - 

1000 50 150 200 Beam 300 300 

1000 250 - - 

700 50 - - 

700 200 150 200 

Third 

and 

fourth Column 300 400 

700 350 - - 

5
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Fig. (9):  Details of member cross sections for the hypothetical frame 

Figure (10) and Fig. (11) show the load–deflection diagrams for these modes of loading. The general shape of 

the diagrams looks like an increasing rounded curve as the load increases, with a pinching in shape as the load 

reverses it's direction. It is clear from these figures that the prestressed frame loses it’s stiffness with the loading 

history progress where the stiffnesses could be represented by the slope of a line tangent to the load–deflection 

diagram. The decrease in stiffness is obvious during the loading or unloading increase for a specific cycle or for 

the repeated cycles at a certain load level. At the pinched part of the curves, the stiffness is reduced due to the 

opened cracks as the load reverses until the cracks close and the concrete can work in compression.

Load-Deflection Curve for the Critical Beam Section @ Midspan Modes 1 & 3)
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Fig. (10):  Load–Deflection Curve for modes 1 and 2
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Load-Deflection Curve for the Beam-Column Connection Joint 3 (Cases 2 & 4)
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Fig. (11):  Load–Deflection Curve for modes 3 and 4

Figure (12) shows the deformed shapes under each loading condition at the center line of the frame in mode 3, 

with magnified displacements.
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Fig. (12):  the deformed shape of a frame cyclically loaded at the center line (Mode 3)
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Conclusions 

The following main conclusions may be drawn:

1. A true replica of the materials stress–strain characteristics is the basic 

requirement for simulation of inelastic behavior up to the collapse of ductile 

structures. 

2. This computational technique allows the use of complex material models under 

cyclic loading and relates them with the structure behavior rather accurately. 

3. The major cause of strength and stiffness degradation and the consequent loss of 

energy dissipation in members is the development of a full depth crack forming a 

plastic hinged zone. 

4. The major cause of strength and stiffness degradation and the consequent loss of 

energy dissipation in members is the development of a full depth crack forming a 

plastic hinged zone. 

5. The analytic model adopted in this study for the fibrous concrete represented 

obviously the behavior of steel fiber prestressed concrete frames under cyclic 

loads. This could be noted through comparing the experimental results of 

previous studies with those of the present model. Additionally, the model is 

composed of simple mathematical relationships forming only one nonlinear 

continuous formula having a high flexibility to deal with and could be developed 

to fit other possible load conditions. 

6. Although the tensile force of the prestressed tendon in concrete members caused 

a reduction in the ability of these members to dissipate the energy, they increased 

the values of failure loads for these members.  

7. the layer section approach is so efficient in nonlinear analysis of concrete 

members, since the stress distribution along the sections seems to be rather close 

to the real state. 
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